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Abstract
Among women, breast cancer is the most frequently diagnosed cancer. Most of the breast cancers represent metastasis to distant
organs at the time of diagnosis and accounts for the majority of deaths. Metastasis is characterized by many genetic aberrations
including mutations, overexpression of oncogenes etc. KIBRA (KIdney/BRAin protein), a scaffolding protein is recently de-
scribed as an important player in the process of invasion and metastasis. The Kidney/BRAin protein through its different domains
interacts with various proteins to couple cytoskeleton arrangement, cell polarity and migration. N terminal and C terminal of the
protein contains the WW, Internal C2 & putative class III PDZ domain that interacts with DDR1, DLC1 & PKCζ. These protein-
protein interactions equip the breast cancer cells to invade and metastasize. Here, we discuss a comprehensive knowledge about
the KIBRA protein, its domains and the interacting partners involved in metastasis of breast cancer.
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Introduction

Breast cancer is one of the most common invasive malignan-
cies diagnosed and is the second leading cause of death among
women globally [1]. It is a heterogeneous disease, which is
characterized by different molecular drivers. Several studies
led to scientific advancements and progress in breast cancer
research and therapy, still most patients with breast cancer are
prone to recurrence, chemoresistance and metastasis. And
since the outcome of treatment are drastically different for
different cancer types, especially in the case of triple negative
breast cancer (TNBC), patient having aggressive clinical
course, the chances of early relapse is high and that of survival
rate is low [2].

Coping with the challenges like recurrence, chemo-
resistance and metastasis is onerous. The increased propensity
of motility and invasiveness, chemo-resistance and radio-
resistance among epithelial malignant tumour is endowed by

epithelial-mesenchymal transition (EMT), a critical biological
process during embryonic development [3–5]. Therefore,
EMT is considered as the elementary step of chemo-resis-
tance, local recurrence and metastasis. The mechanism of
EMT has been widely studied over decades, and a number
of hypotheses have been proposed such as signalling path-
ways (transforming growth factor-β/Wnt/Notch) [6–8], can-
cer stem cells [9], miRNA [10], oncogenic events. Proto-
oncogene activation (ras) [11], cancer stem cells, miRNA
and inflammation are associated with the induction of EMT,
but the EMT mechanism and the genes involved have not
been explored completely. Thus, the extensive understanding
of the molecular mechanisms and identification of the genes
responsible for breast cancer recurrence, chemo-resistance
and metastasis are necessary for precision medicine [2,
12–14].

KIBRA (KIdney/BRAin protein), also known as WWC1
(WW and C2 domain containing 1), is a multi-domain phos-
phor-protein and is predominantly found in brain and kidney.
It is localized in cytoplasm [15] however it’s significant
amount has also been observed in nucleus [16]. It interacts
with signalling molecules like PATJ (PALS1- associated
tight junction protein) and synaptopodin, regulating cell po-
larity, cell migration and cell cycle [15, 17–19]. It was initially
cloned and characterized by Kremerskothen et al., [15] as a
molecule which interacts with postsynaptic dendrin protein
(human dendrin KIAA0749) [20, 21]. Since then it has been
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a subject of interest in the field of cognitive neuropsychology.
However, the role of KIBRA in breast cancer came into light
only after the discovery of regulation of oestrogen receptor
activity by binding to the dynein light chain 1(DLC1) mole-
cule [22]. Later on, it was also reported that the KIBRA inter-
acts with discoidin domain receptor 1(DDR1) and modulates
collagen-inducedMAPK kinase signalling in breast cells [16].
These investigations suggests that as a substrate of Cdk1,
Aurora Kinase and ERK substrate KIBRA plays a major role
in cell cycle regulation, migration and proliferation [23–25]
and its role in modulation of DNA damage response in phos-
phorylation dependent manner [26], have shown that KIBRA
promotes oncogenic signalling, however, despite all these
studies, the molecular mechanism involved and its oncogenic
potential remains unclear. In this review we discuss the role of
KIBRA and its interacting partners in potentiating the breast
cancers for metastasis.

Structure of KIBRA and Regulation

Human protein KIBRA is a scaffolding protein and is
encoded by the WWC1 gene located at chromosome
5q35.1. The cytoplasmic protein [15] consists of 1113 ami-
no acids and has an approximate size of 125.3 kDa. KIBRA
consists of two N terminal WW domains (positions 6–39
and 54–86 respectively) covering a stretch of 35–40 amino
acids [22]. Both of the domains consists of two conserved
tryptophan residue, an internal block of aromatic amino
acids and a conserved proline residue [27]. These domains
interact with the prolein rich region (PPxY) motif of other
proteins. A 15 amino acid long zone responsible for nuclear
localization has been identified between amino acid 361and
376 [22]. An internal C2, Ca2+ sensitive, [28] domain is
composed of two four stranded β sheets and is located in
between 655 and 783. This 128 stretches long amino acid
residue is involved in phospholipid binding in a calcium-
dependent manner. Calcium binding induces a change in

electrostatic potential which plays a role in the enhancement
of phospholipid binding [29]. Apart from these a glutamic
acid-rich region is located in between 845 and 873 [15]. At
C terminal a class III PDZ binding sequence is located in
between 1110 and 1113 [19], and has a major role in the
formation and function of signal transduction complexes
(Fig. 1) [30].

KIBRA is a major regulator of Hippo signaling pathway
and is involved in inhibiting cell proliferation and apoptosis
[24] but further studies has reported that phosphorylation
regulation of KIBRA by mitotic kinases (Aurora and
CDK1) during mitosis [24], ERK (extracellular signal-
related kinases) at Ser548 and RSK (p90 ribosomal S6 ki-
nases) at Thr929 and Ser947 leads to cell migration and pro-
liferation [25].

Interacting Partners of KIBRA

KIBRA has been involved in numerous cellular functions
such as cell polarity and migration, transcriptional regulation,
vesicle transport and synaptogenesis. These functions were
acknowledged after a study identified the interacting partners
of KIBRA via yeast two-hybrid screening [15].

KIAA0749, a postsynaptic dendrin protein, was the first
interacting partner identified [15]. This dendrin protein in-
teracts with the WW domain of KIBRA through its PPxY
motif and is found to be localized in the dendritic region. It
plays a major role in cytoskeleton organisation [31].
KIAA0749 also interact with α-actinin and synaptic scaf-
folding molecule S-SCAM [32], and is responsible for sleep
deprivation [21].

Further studies have identified synaptopodin and PKCζ
as the interacting partners of KIBRA that has asserted its
role in the process of postsynaptic density (PSD) [19, 28].
Similar to dendrin the PPxYmotif of synaptopodin interacts
with the WW domain of KIBRA and help in cytoskeleton
arrangement [19, 31]. KIAA0513 is also an interacting
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partner of KIBRAwhich has a potential link with cognition
and is found to be upregulated in schizophrenic patients
[33].

PATJ (PALS1- associated tight junction protein) is anoth-
er interacting partner of KIBRAwhich has asserted its role
in cell polarity. It is a component of the evolutionarily con-
served multiprotein complex and interacts with the putative
class III PDZ binding site of KIBRA [34, 35]. Apart from
PATJ, another link of KIBRA with cytoskeleton was ac-
knowledged after identification of binding of dynein-
complex with it [36]. This interaction was substantiated by
the study describing the simultaneous interaction of KIBRA
with Dynein light chain 1 (DLC1) and histone H3. The
binding of KIBRA with H3 is mediated via the glutamic
acid-rich region of KIBRA, located near the C terminus
(Fig. 2) [22].

The conceptual involvement of KIBRA in transcriptional
regulation is further supported by various studies suggest-
ing the upregulation of KIBRA expression upon the appli-
cation of progesterone and its binding with discoidin do-
main receptor1 (DDR1). DDR1 is a tyrosine kinase,

important for the development of mammary gland and in a
molecular complex with KIBRA and PKCζ is, involved in
the collagen-regulated stimulation of MAPK cascade [16].

Interaction of KIBRA with its Partners
Potentiates Breast Cancer Metastasis

Breast cancer starts at a primary site as a local disease but with
a metastatic potential to distant sites and forming secondary
tumors [37]. The common sites for breast cancer metastasis
are lungs, brain, bone and liver [38–40]. The molecular mech-
anism involving the role of genes and proteins in metastasis is
largely unexplored. In the following text, we discussed the
interaction of KIBRA with its partners and the outcome
(Table 1).

DDR1

DDR1 is epithelial-specific and highly expressed during
pregnancy and several primary breast cancers [43]. In

Table 1 Regulation and Binding motifs of various partners

Interacting Partners Binding Motifs Binding Domain of KIBRA Regulation Reference

DDR1 PPxy motif WW domain ERK MAPK pathway [41]

PKCζ Catalytic Domain Small fragment of 44aa ERK MAPK cascade activation [28]

DLC1 Indirectly Binds via ER-DLC1 complex Glutamic Acid Region binds to ER ER transactivation [22]

PATJ Eight PDZ domain Last four AAs Reorientation of MTOC [35, 42]
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female DDR1 knockout mice showed defects in blastocyst
implantation together with hyper-proliferation and abnor-
mal branching of the mammary ducts and an increased
amount of collagenous extracellular matrix surrounding
the mammary epithelium [44]. This suggests that DDR1
has a role in mediating extracellular matrix (ECM) signal-
ling within the mammary gland and this signaling plays a
role in alveolar morphogenesis and regulation of cell motil-
ity and adhesion [45]. Deregulation of these signaling path-
ways provides the cells with an ability to migrate and
invade.

During tumor progression DDR1 interacts with KIBRA.
PPxy motif of DDR1 binds to to the WW binding motif of
KIBRA and regulates ERK MAPK pathway in the ligand-
dependent response of DDR1 [41]. DDR1 get activated when
its ligand (collagen I or IV) comes and bind to it, this leads to
dissociation of the KIBRA-DDR1 complex which indicates
that KIBRA plays a role in the downstream signaling path-
ways induced by the extracellular matrix (Fig. 3). E. Faraci-
Orf et.al., showed that forced activation and expression of
DDR1 in mouse mammary epithelial HC11 cells with colla-
gen results in increased activation of Stat5, a downstream
target of Prlr and increased β-casein gene expression [46].

Protein Kinase Cζ

Protein kinase Cζ, a member of PKC family of serine/
threonine kinases, is another interacting partner of KIBRA
as well as of DDR1 involved in the process of metastasis. It
interacts with a small fragment of 44aa of KIBRA(953 to
996) containing four potential PKC phosphorylation sites
(S967, S975, S978 and S981) through its complete catalytic
domain [28] and is involved in multiple signal transduction
pathways and modulate the processes like cell proliferation,
adhesion, invasion and chemokine- triggered migration in
breast cancer [47–50]. The interaction of PKCζ with DDR1
and KIBRA in the presence of collagen forms a complex

which leads to ERK MAPK cascade activation [51].
Collagen stimulate the DDR1 which lead to dissociation
of complex and allow either PKCζ-KIBRA complex for
downstream signaling or stimulated DDR1 to participate
in Ras/ ERK signaling (Fig. 3) [52].

PKCζ is a major player of PAR (Partitioning Defective)
polarity complex, responsible for the establishment of the
cell polarity, but the PAR polarity complex independent
function of PKCζ has been observed in the invasive pro-
gression of breast cancer. PKCζ depletion promotes EMT in
absence of functional PAR polarity complex. An oncogenic
PKCζ - NFκB-p65 signalling suppresses E-cadherin and
ZO-1 expression and promotes epithelial-mesenchymal
transition (EMT) and cause invasion in breast cancer. In a
study conducted on experimental animal models by
Arindam Paul et.al. PKCζ was found to be highly active in
invasive and metastatic breast cancers rather than non-
invasive ductal carcinomas and the depletion if PKCζ in-
hibits invasion and metastasis in breast cancer cells [53].

Dynein Light Chain 1

DLC1 is a cytoplasmic protein which is encoded by
DYNLL1 gene in a human being [54]. It is an 8 kDa
highly conserved protein component of cytoplasmic dy-
nein complex and is expressed in numerous tissues. Along
with its role in dynein motor function, it also interacts
with Pak1 (serine/threonine p21-activated kinases 1)
which phosphorylates and upregulates DLC1 expression
and promotes the growth of ER-positive breast cancer
cells (Fig. 4a). In addition, conditional upregulation of
DLC1 facilitates recruitment of DLC1-ER complex to
the ER target gene pS2 which facilitates estrogen-
induced ER transactivation growth stimulation, and
anchorage-independent growth of breast cancer cells
[55]. Rayala et.al in a study revealed that KIBRA interacts
with DLC1 and potentiates ER transactivation by getting
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recruited at ER-responsive element (ERE) sites in ER-
responsive genes in a ligand-induced manner through the
underlying mechanism. The glutamic acid-rich region of
KIBRA interacts with histone H3 which lead to the open-
ing of chromatin with the subsequent recruitment of

KIBRA-DLC1 and DLC1-ER complexes to chromatin of
ER-targeted genes (Fig. 4b) [22].

SNX 4 (sorting nexin 4) interacts with the dynein (micro-
tubule motor protein) and KIBRA and forms a complex
which sort out the transferrin receptor (TfnR), a component

DLC1

DYNLL1

DLC1P

PAK1

GROWTH

High DLC1 
expression

KEY
- Interac�on

- Phosphoryla�on P

Chroma�n opens leaving 
ER targeted genes 
accessible

Subsequent recruitment of 
KIBRA-DLC1 and DLC1-ER 
to ERE

Estrogen s�mulated ER 
transac�va�on

Anchorage-independent 
growth of breast cancer 
cells

KIBRA interact with 
histone (H3)

H3

H3
ERE

KIBRA

H3
ERE

KIBRA

ER TRANSACTIVATION

METASTASIS

A)

B)

C)

D)

E)

KIBRA

a

b

Fig. 4 a DYNLL1 gene
expression and its effect on ER
positive breast cancer cells. b ER
transactivation: involving KIBRA
–DLC1 complex formation

KIBRA Team Up with Partners to Promote Breast Cancer Metastasis 631



involved in proliferation and cell survival [56], from
lysosomal-mediated degradation and guide towards the
juxtanuclear endocytic recycling pathway [36].

PALS1-Associated Tight Junction Protein (PATJ)

PATJ has been identified as another interacting partner of
KIBRAwhere last four amino-acids of KIBRA interact with
the eight PDZ domain of PATJ. Additionally, KIBRA also
interact directly with synaptopodin (involved in actin based
cytoskeleton organization) and regulate directional migra-
tion [42]. PATJ is a member of an evolutionary conserved
system the Pals1-PATJ-Crb complex (Protein-associated
with Lin seven1-Pals1 associated tight junction protein-
Crumbs3 complex) which regulates apicobasal polarity,
tight junction formation, signaling, and directional migra-
tion of eukaryotic cells [57, 58] by regulating reorientation
of the MTOC (microtubule-organizing centre) and localiza-
tion of PKC and PAR3 to the leading edge in direction of
migration [35] .

Conclusion and Future Prospective

In the recent years, extensive research disclosed the in-
volvement of alterations and mutations in numerous genes
and proteins in the process of cancer metastasis. There are
limited reports about the role of KIBRA in the process of
invasion and metastasis. KIBRA is a scaffolding protein, its
interaction with various other proteins results in the inva-
sion of cancer cells (Fig. 5). Although the fundamental
question about the function of KIBRA as a tumor suppres-
sor [59] or oncogenic [60] remains unidentified, recent in-
vestigations have succeeded in demonstrating its metastatic
features as an outcome of interaction with its partners.
Moreover, the roles played by its interacting partners in

the process of metastasis and the pathways it orchestrates
for metastasis cascade demands to be appreciated in creat-
ing a possibility of therapeutic target against the invasive-
ness of breast cancer.
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